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Abstract. We extend the model Hamiltonian of cubic perovskite manganites to a layered
manganite system by considering the anisotropy in charge and spin couplings. By minimizing
the total free energy of the system, we have obtained the magnetic ground state of the layered
manganite crystal La1.4Sr1.6Mn2O7 as a function of the anisotropic ratio of charge coupling,
tc/tab. It is found that while each MnO2 bilayer has a ferromagnetic ground state, the interplane
magnetic configuration changes from a ferromagnetic order to an antiferromagnetic order
with decreasingtc/tab. This result can account qualitatively for pressure-enhanced interplane
magnetoresistance in layered manganite crystals.

1. Introduction

The recent discovery of colossal magnetoresistance (CMR) [1–5] in the doped manganites
RE1−xAExMnO3 (RE and AE being trivalent rare earth and divalent alkaline earth ions,
respectively) has stimulated a great number of efforts in understanding their unusual
transport and magnetic properties [6–13]. The striking correlation between ferromagnetism
and metallic conduction in the mixed-valence oxides RE1−xAEx(Mn3+

1−xMn4+
x )O3 [14, 15]

was explained qualitatively by Zener’s double exchange (DE) model [16], which was
subsequently refined by Anderson and Hasegawa [17], and by de Gennes [18]. According to
this mechanism both the ferromagnetism and metallic conduction are linked to the mobility
of the eg conduction electrons. The Mn3+ ion has an electronic configuration of 3d4 (t32ge1

g)
and the Mn4+ ion has an electronic configuration of 3d3 (t32ge0

g). Charge carriers are doped by
substitution of RE3+ with AE2+ ions into the Mn eg orbitals that are strongly hybridized with
O 2p orbitals. These carriers become itinerant through the network of the MnO6 octahedra,
and simultaneously can mediate the ferromagnetic (FM) kinetic exchange interaction (the
DE interaction) between the localized Mn t2g spins (S = 3/2). A distinct feature is that the
spin of the itinerant eg electron and the localized spins on each Mn site tend to align parallel
because the on-site Hund coupling between these spins is sufficiently large compared with
the transfer integralt of itinerant electrons between the nearest-neighbour (NN) Mn sites.
As a result, the amplitude for a carrier to hop from sitei to j is highly affected by the
relative angles between the localized spinsSi andSj , FM order maximizing the hopping
and antiferromagnetic (AF) order minimizing it. Although a great number of works have
been done on the Mn oxides [6–32], their magnetic and transport properties, including the
magnetic phase diagram, are not completely clear and much more needs to be done.
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A recent finding of the interplane tunnelling magnetoresistance (TMR) in layered
perovskite manganites La2−2xSr1+2xMn2O7 with x = 0.3 and x = 0.4 provides a novel
approach to the large MR attainable at low magnetic fields [33–35]. The layered manganite
is composed of FM MnO2 bilayers with intervening insulating (La,Sr)2O2 blocks and can
be viewed as an infinite array of ferromagnet/insulator/ferromagnet junctions. In such a
quasi-two-dimensional system, the interplane as well as in-plane charge dynamics (and
hence the MR characteristics) is expected to critically depend on the interlayer magnetic
coupling between the FM MnO2 bilayers. The degenerated eg orbitals are split into the
dx2−y2 and d3z2−r2 states. In the layered manganite crystal, the former extends along the
sheet direction and has largetab, while the latter has smalltc, where tab and tc are the
transfer integrals of itinerant electrons between in-plane and out-of-plane NN Mn sites,
respectively. Accordingly, the in-plane superexchangeJab is also larger than the out-of-
plane superexchangeJc. In this paper, we extend the model Hamiltonian in [21] to include
the anisotropy and spin correlations between the inplane Zener carriers. Using the Hartree–
Fock approximation and making numerical calculations, we obtain the magnetic coupling as
a function oftc/tab andJc/tab in a layered manganite crystal, La2−2xSr1+2xMn2O7 (x = 0.3),
at zero temperature. It is shown that atx = 0.3, while each MnO2 bilayer always has an
FM order, the interplane magnetic configuration transits from an AF order to an FM order
with decreasing anisotropy (by increasingtc/tab).

2. Theoretical description

To set up a simple model Hamiltonian of perovskite Mn oxides, only the d orbitals of Mn
ions are considered by disregarding the other kinds of atoms La, O etc. The role of these
atoms may be implicitly included in the parameter values in the model. An isotropic model
Hamiltonian for the cubic perovskite manganites RE1−xAExMnO3 has been suggested by
Inoue and Maekawa [21]. It is straightforward to extend it to an anisotropic layered structure
where each plane is modelled on an MnO2 bilayer of the layered manganite crystal and a
small tc describes the coupling between the adjacent MnO2 bilayers separated by rock salt-
type layers of (La,Sr)2O2. Besides, we consider the spin correlations between the inplane
carriers. The model Hamiltonian can be written as

H = −tab
inplane∑
〈ij〉σ

(a
†
iσ ajσ + HC)− tc

interplane∑
〈ij〉σ

(a
†
iσ ajσ + HC)+ U

2

∑
iσ

niσ niσ̄

+Jab
inplane∑
〈ij〉

Si·Sj + Jc
interplane∑
〈ij〉

Si·Sj − JH
∑
i

Si·si − Js
inplane∑
〈ij〉

si·sj . (1)

HereU is the on-site Coulomb repulsion between spin-up and spin-down itinerant electrons,
a
†
iσ (aiσ ) is a creation (an annihilation) operator of an itinerant electron at sitei with spinσ ,

andniσ = a†iσ aiσ is the itinerant-electronic number operator.Jab (>0) andJc (>0) are the
NN exchange interactions between in-plane and out-of-plane localized spins, respectively,
and JH (>0) represents the on-site Hund coupling between the itinerant electron and
the localized spin. Js (>0) stands for the spin correlation between the Zener carriers,
si = (1/2)

∑
σν(a

†
iσ τσνaiν) is the conduction-electron spin density withτ the Pauli matrix.

The introduction of the last term in equation (1) is based on the following consideration.
According to the DE mechanism, the ferromagnetism of the doped Mn oxides is induced
by the motion of the itinerant electrons. The superexchange interaction between the NN
localized spins is antiferromagnetic, playing a counteractive role in the ferromagnism. At
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x = 0, there is neither motion of itinerant electrons nor the DE-induced ferromagnetism. In
this case, however, on each MnO2 plane perpendicular to the crystalc-axis, the magnetic
moments on Mn sites are aligned, even though the moment direction alternates from plane to
plane, which is called the type-A AF configuration. It follows that besides the DE-induced
FM interaction, there exists a direct in-plane FM coupling between the 3dx2−y2 orbitals of
eg electrons on the NN Mn sites, which can be described by the last term of equation (1).
As the eg electrons are decreased with doping, this coupling becomes gradually weak. At
x = 1, there is no eg electron and so this direct FM coupling as well as the DE-induced
FM coupling vanishes, resulting in a three-dimensional (type-G) AF configuration of the
localized spins.

We apply the Hartree–Fock approximation to Hamiltonian (1) and compare the free
energies of the spiral (SP) and canted (CN) states, the FM, A-type AF and G-type AF states
being their special cases. In our coordinate system, the direction of the localized spin on
site i is denoted by its spherical coordinate(π/2, ϕi). The relative angle between the spins
on two NN sitesi and j is ϕij = ϕi − ϕj . For either SP or CN states, their absolute
values are assumed to be|ϕij | = 2θab for the NN sitesi andj on the samex–y plane and
|ϕij | = 2θc for them on adjacentx–y planes. The sign ofϕij is determined not only by the
relative position between sitesi andj , but also by the spin configuration of the system. In
an SP state,ϕij > 0 for Rij = Ri −Rj = a, b or c; ϕij < 0 for Rij = −a, −b or −c,
wherea, b and c are the basis vectors along thex, y and z directions, respectively. For
a CN state, we divide all the sites into two sublattices so that all the NN sites of each site
in sublattice A belong to sublattice B, andvice versa. The sign ofϕij in the CN state rely
on whether sitei is in sublattice A or B, i.e.ϕij > 0 for i ∈ A and ϕij < 0 for i ∈ B.
Obviously, both SP and CN states become the FM state forθab = θc = 0, the type-G AF
state forθab = θc = π/2, and type-A AF state forθab = 0 andθc = π/2, respectively.

If directly decoupling the Hund coupling term in equation (1) by the Hartree–Fock
approximation, we will have a termsi·〈Si〉, which depends explicitly on the orientation
of 〈Si〉. This is not convenient for further calculation, because the orientation of〈Si〉
varies from site to site. Instead of a fixed spin quantization axis, we use a set of local
spin quantization axes by taking the quantization axis at sitei along〈Si〉. Rotation of spin
quantization axes from the original fixed one to the local ones is equivalent to the following
unitary transformation

ai↑ = e−iϕi/2(ci↑ + ci↓)/
√

2

ai↓ = eiϕi/2(ci↑ − ci↓)/
√

2.
(2)

By using the transformation above and the Hartree–Fock approximation, the Hamiltonian
can be reduced toH = Hd +Hs +E0, whereHd is the Hamiltonian of the localized spins
Hs is the Hamiltonian of the itinerant electrons andE0 is a constant term. They are given
by

Hd =
∑
i

〈Li〉·Si (3)

Hs = −
{
tab

inplane∑
〈ij〉σ

[cos(ϕij /2)c
†
iσ cjσ + i sin(ϕij /2)c

†
iσ cjσ̄ ]

+tc
interplane∑
〈ij〉σ

[cos(ϕij /2)c
†
iσ cjσ + i sin(ϕij /2)c

†
iσ cjσ̄ ]

}
+
∑
iσ

vσ c
†
iσ ciσ (4)
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E0 = −NUn↑n↓ − Jab
inplane∑
〈ij〉
〈Si〉·〈Sj 〉 − Jc

interplane∑
〈ij〉

〈Si〉·〈Sj 〉

+JH
∑
i

〈Si〉·〈si〉 + Js
inplane∑
〈ij〉
〈si〉·〈sj 〉. (5)

HereLi = 2Jab
∑inplane

j 6=i Sj + 2Jc
∑interplane

j 6=i Sj − JHsi , andvσ = Unσ̄ − βσJH |〈Si〉|/2−
2Js
∑inplane

j 6=i |〈sj 〉| cos(2θab) in which β↑ = −β↓ = 1 andnσ = 〈c†iσ ciσ 〉 is the density of
the electrons with spinσ . We have assumed that bothJH andU are large enough, so
that si andSi are always aligned parallel and on-site double-occupancy of eg electrons is
prohibited. Under this approximation, we have|〈Si〉| = S = 3/2 and|〈si〉| = (1− x)/2.

We next diagonalize HamiltonianHs by considering the SP and CN states, respectively.
For the SP state, by the aid of the Fourier transformation, equation (4) becomes

HSP
s =

∑
kσ

[(vσ + ε′k)c†kσ ckσ − ε′′kc†kσ ckσ̄ ]. (6)

Here,εk′ = −2tab cosθab(coskxa + coskyb)− 2tc cosθc coskzc, ε′′k = 2tab sinθab(sinkxa +
sinkyb) + 2tc sinθc sinkzc. Introducing further new operatorsdk↑ anddk↓ in terms of the
relations

ck↑ = [U+(ξ)dk↑ + (ε′′k/|ε′′k|)U−(ξ)dk↓]/
√

2

ck↓ = [(ε′′k/|ε′′k|)U−(ξ)dk↑ − U+(ξ)dk↓]/
√

2
(7)

with ξ = (1/2) tan−1[1E/|ε′′k|] and U±(ξ) = |sinξ ± cosξ |/√2, the Hamiltonian is
diagonalized as

HSP
s =

∑
k

[ESP− (k)d
†
k↑dk↑ + ESP+ (k)d†k↓dk↓] (8)

where

ESP± (k) = v0− ε′k±
√
(12

E + ε′′2k ) (9)

with v0 = (v↑ + v↓)/2 being the normalized on-site potential and1E = (v↑ − v↓)/2 being
the effective field proportional to the strength of the Hund coupling.

For the CN state with two sublattices, the Fourier transformation of equation (4) yields

HCN
s =

∑
kσ

[(vσ + ε′k)c†kσ ckσ + iε′′′k c
†
kσ ck̃σ̄ ] (10)

wherek̃ is the reduced wavevector corresponding tok+k0 with k0 =
∑3

l=1 b̂l/2, b̂l being
the basis vectors of the three-dimensional reciprocal lattice, andε′′′k = −2tab sinθab(coskxa+
coskyb)− 2tc sinθc coskzc. It is easy to see thatε′′′

k̃
= −ε′′′k . In equation (10), the coupled

electronic states with momentumk and k̃ as well as opposite spins can be decoupled by
using the unitary transformation

ck↑ = [U+(χ)dk↑ + i(ε′′′k /|ε′′′k |)U−(χ)dk̃↓]/
√

2

ck̃↓ = [i(ε′′′k /|ε′′′k |)U−(χ)dk↑ + U+(χ)dk̃↓]/
√

2
(11)

with χ = (1/2) tan−1[(1E + ε′k)/|ε′′′k |], andU±(χ) = |sinχ ± cosχ |/√2. The Hamiltonian
is diagonalized as

HCN
s =

∑
k

[ECN− (k)d
†
k↑dk↑ + ECN+ (k)d

†
k̃↓dk̃↓] (12)
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where

ECN± (k) = v0±
√
12
E + ε2

k±21Eε
′
k (13)

with εk = −2tab(coskxa+ coskyb)−2tc coskzc. The eigenvalues of AF and FM states are
easily obtained in the limits ofθab = θc = 0 andθab = θc = π/2, respectively.

The average of eg electron number per Mn site is equal to (1−x), i.e.n↑ +n↓ = 1−x.
At zero temperature the total free energy per site is given by

F(θab, θc) = [4JabS
2+ Js(1− x)2] cos(2θab)+ 2JcS

2 cos(2θc)

+ 1

N

∑
k

[E−f (E−)+ E+f (E+)]. (14)

Here the first part is the free energy of the localized spins, and the second part is that of the
itinerant electrons, in whichN is the total number of the Mn sites andk is the wavevectors.
f (ε) is the Fermi–Dirac distribution function and equal to a unit step function2(µ− ε) at
T = 0, where the chemical potentialµ is determined from the condition

1− x = 1

N

∑
k

[f (E−)+ f (E+)]. (15)

From equations (14) and (15), the total free energies of the SP and CN states for various
θab andθc can be calculated. By comparing them, one finds the ground state corresponding
to a minimal free energy. For fixedx = 0.3, the interplane magnetic order of the layered
manganite crystals is evaluated as a function oftc/tab andJabS2. Magnetic phase diagrams
in the Jab–x andJc–x planes can be also obtained by the same calculations.

3. Numerical results

At low temperatures ofkBT � 1E , only the lower energy branchE−(k) is occupied by
the carriers. So we can neglect the higher branchE+(k) in calculating the free energy of
the itinerant electrons. Then equations (14) and (15) are reduced to

F(θab, θc) = [4JabS
2+ Js(1− x)2] cos(2θab)+ 2JcS

2 cos(2θc)+ 1

N

∑
k

[E−f (E−)] (16)

and

1− x = 1

N

∑
k

f (E−) (17)

with

ESP− (k) = v0− ε′k −
√
12
E + ε′′2k (18)

ECN− (k) = v0−
√
12
E + ε2

k − 21Eε
′
k. (19)

In the following numerical calculations, all energies are taken in unit oftab. We first choose
to vary tc and Jc, the other parameters being fixed asx = 0.3, 1E = 10, Js = 0.3 and
Jab/Jc = 4. For a given point on thetc–Jc plane, substituting equations (18) and (19)
into equation (17), we can obtain the chemical potentials as functions ofθab and θc for
the SP and CN states, respectively. Then, from equation (16), together with equations (18)
and (19), the free energiesFSP (θab, θc) andFCN(θab, θc) can be obtained, their minimum
corresponding to the magnetic configuration (θab, θc) in either SP or CN state for the given
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Figure 1. Interplane magnetic configuration of La1.4Sr1.6Mn2O7 in the tc–Jc plane.
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Figure 2. Inplane (a) and interplane (b) magnetic configurations of La2−2xSr1+2xMn2O7 in the
x–Jab andx–Jc planes, respectively.

tc andJc. Repeated calculations by varyingtc andJc can yield a magnetic phase diagram
in the tc–Jc plane.

It is found that atx = 0.3 andT = 0, the inplane magnetic order is always FM (θab = 0)
provided thatJab is taken as reasonable values. The interplane magnetic order is a function
of tc andJcS2, as shown in figure 1. For a givenJc, in the smalltc region there is an AF
configuration along thec-axis direction. Astc is increased beyond a critical value, the AF
order is replaced by a FM order. The calculated result in figure 1 can account qualitatively
for the transport measurements under pressure in La2−2xSr1+2xMn2O7 (x = 0.3) [35]. They
show that the interplane TMR is greatly enhanced by the application of pressure. This
behaviour can be understood by the following argument. It was shown that the applied
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pressure can weaken the interplane charge and spin coupling [36]. According to figure 1,
a decrease oftc may result in a crossover from the interplane FM alignment to the AF
alignment. Thus, the suppression of the interplane coupling, by applying pressure, may
produce AF static order between the adjacent MnO2 bilayers, causing the increase of the
resistivity at zero magnetic field and so the increase of the TMR [37].

We next calculate the magnetic phase diagram in thex–Jab andx–Jc planes by taking
tc = 0.25. The calculated results for inplane and interplane magnetic configurations are
shown in figure 2(a) and 2(b), respectively. There are an inplane FM order and an interplane
AF order for smallx. With increasingx, the interplane AF order changes into the FM order.
As x is close to 1, there are an inplane CN order and an interplane AF order. In the inplane
CN region, with the increase ofx, the canted angle increases from 2θab = 0 (FM order)
and arrives at 2θab = π (AF order) atx = 1, which is a continuous crossover from the FM
to AF order.

4. Summary

We have developed a model Hamiltonian of a layered manganite system. It includes not
only the anisotropic transfers of the itinerant electrons, the on-site Hund coupling and the
Coulomb repulsion and the anisotropic superexchange coupling between localized spins, but
also the spin coupling between the inplane itinerant electrons. Minimizing the total free
energy with the aid of numerical calculations, we have obtained the magnetic ground state
of the layered manganite crystal La1.4Sr1.6Mn2O7 as a function of the interplane charge and
spin couplings (tc and Jc). It is shown that atx = 0.3, while the inplane ground state
is FM, the interplane magnetic configuration changes from the AF order to the FM order
with increasingtc, which can account qualitatively for the pressure-enhanced interplane
magnetoresistance observed in layered manganite crystals.
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